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Overview

This deck of slides set up the linear regression model and goes through
a selection of elementary results that are considered prerequisites for
this course.

The corresponding chapters in Hansen are 2 to 5.
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(Linear) conditional-expectation function (H2.14-H2.15)

Dependent variable Y € R and (column) vector of regressors X € R*

The conditional-expectation function (CEF) is
m(z) =E(Y|X = z).

The regression error is

e=Y —m(X).

Then
Y =m(X) +e, E(e|X =) =0.

The CEF is interesting from a prediction perspective as it is optimal
under expected squared loss, i.e.,
E[(Y —m(X))’] < E[(Y —m(X))?]

for any function m.
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The linear CEF model restricts the conditional mean function to be
E(Y|X =) = 2161 +x2f2 + -+ + 2 = 2.

This is linear in the coefficient vector S.

Nonlinearities in the regressors can be accommodated.

Alternatively (and equivalently),

Y =X'B+e, E(e|X =z) =0. (1)

Observe that, by the law of iterated expectations, E(e|X = z) = 0
implies (among other things) that

E(Xe)=0
and also that E(e) = 0.
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We only restrict the conditional mean, not the conditional variance. So
E(e?|X = z)
may be a function of z.

One sometimes assumes that
E(e?|X = z) = 02,
which does not change with z.

This is an assumption of homoskedasticity.
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Best linear approximation (H2.18 and H2.25)

When the CEF m is nonlinear we can still look for the best linear
approximation '3 to it.

Using expected squared loss, this mean solving

min E[(m(X) - X'8)?].

The first-order condition for this problem is
E(XX')8 = E(Xm(X)),
and is linear in .
If rank E(X X') = k we find the unique solution
B=EXX)'TEXmX))=EXX)'EXY)

where we used E(XY) = E[E(XY|X)] = E[XE(Y|X)] = E(Xm(X))
in the last step.
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With this definition of 5 we can define the projection error
e=Y - X'p
and observe that
E(Xe) =E(XY)-E(XX)B=EXY)-EXX)EXX)'E(XY)=0
so that we can always write
Y =X'B+e, E(Xe) =0. (2)
If a constant term is included this further implies that E(e) = 0.

Equations (1) and (2) only concern the same parameter vector § and
error e when the CEF is linear. In the nonlinear CEF case, (1) is
meaningless, but (2) is not.
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Random (i.i.d.) sampling (H4.2)

(Y1,X1),...,(Yn,Xp) is a random sample (of size n) on (Y, X) if and
only if the (Y;, X;) are

independent across ¢ and,

identically distributed according to the distribution of (Y, X).

Both parts can be relaxed considerably, but the random-sampling
framework suffices for our purposes.
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Matrix notation

We have V; = X[ +e; foralli=1,... n.
Can vertically stack these n equations to arrive at
Y =Xp+e
Here, X is an n x k matrix while Y and e are each n x 1 vectors.
Now wish to construct an estimator B of 3.

An estimator is just a function of the sample; many such functions can
be taken.

Here, focus on ordinary least squares (OLS) estimator.
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Ordinary least-squares estimator (H3.4 and H3.10)

Derivation 1: As the minimizer of the sum of squared residuals (SSR)
or sum of squared errors (SSE),

SSE(b) = zn:(yi — X/b)? = (Y — Xb)(Y — Xb).

i=1

The first-order condition for a minimum is

XY - X[b) = X'(Y — Xb) =0,
i=1

this is a linear system of k equations in k& unknowns.

A unique solution exists if rank X’ X = k; it equals

B = (1/niXiX{) (%ZX Y) (X' X)"Y(X'Y).
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The motivation for this approach to deriving OLS comes from the fact
that we can characterize 8 to be the solution to the corresponding
population problem

E[(Y — X/b)?]

Let e;(b) =Y; — X/b. Then
mln SSE(b mln Z €;

and so we are minimizing the variance (if a constant term is included)
of the squared errors.
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The least-squares residuals are
& =Y; — Xip = ei(P).

Collecting these in the n x 1 vector é =Y — X B we easily observe that
n

Y Xiti=X'e=XY-X'Xp=XY-X'X(X'X)""(X'Y)=0.

i=1

This motivates Derivation 2: As the estimator that yields residuals that
are orthogonal (in sample) to the regressors,

n
argsolvey Z Xiei(b) = 0.
i=1
In matrix notation this is equal to solving the OLS estimating equations

X'(Y - Xb)=0

and this yields 3. This problem is a sample version of (2).
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Derivation 3: Finally, given that we know that
B =E(XX')'E(XY),

a ratio of expectations, we may consider a direct sample counterpart
to this.

A sample counterpart of E(XY) is I/nY " | X;Y; = X'Y /n.
A sample counterpart of E(XX') is I/n > 1 | X; X! = X'X /n.

This again yields .
f=(X'X)"YX'Y).
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Collinearity

The estimating equations
X' (Y -Xb)=0
have a unique solution when the k x k design matrix X’X is invertible.

As, for any k x 1 vector a,
aX'Xa=|Xal?

the design matrix is invertible if and only if the columns of X are
linearly independent.

This is a no-multicollinearity condition.

In absence of this there are many solutions to the least-squares problem.
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Projection matrices (H3.11-H3.16)

The matrix
P=X(X'X)"'X'

projects on the space spanned by the columns of X.

The matrix
M=1,-P=1, — X(X’X)le’

projects on the orthogonal complement.
Observe that
PY =Xj3, MY=Y-XjB=eé

and that Y = PY + MY, decomposing Y into two orthogonal parts.
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Gauss-Markov and Generalized least squares (H4.4-H4.9)

We derived an expression for 8 from (2). It is valid under both (1) and

(2).
Under (1) we have E(e|X = x) = 0 and so also
Elg(X)e] = E[g(X)(Y = X'B)] =0
by the law of iterated expectations.
Hence, for any function g such that E[g(X)X'] is an invertible matrix,
B =E[g(X)X']'E[g(X)Y]
is equally true.
Leads to many possible linear estimators of (.
Not true under (2) alone!
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Let G be n x k matrix collecting all g(X;). Then the corresponding
estimator is ~
B=(G'X)" GY).

Immediately clear that
E(S —B|X) =0

and that ~
var(f|X) = (G'X)"{(G'DG)(X'G) ™",

where the n x n diagonal matrix

D =E(ee|X) = diag(c?,...,02)

rYn

is the conditional variance matrix of the error vector.

For OLS, G = X. Under homoskedasticity, D = o?I, and so the
variance of the OLS estimator becomes

var(B|X) = o2 (X'X)" "
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Under (1) and homoskedastic errors, OLS is the best linear unbiased
estimator (BLUE) of 8. That is, we use G = X.

No other linear estimator that is unbiased can achieve a variance that
is smaller than §.

No longer true under heteroskedasticity. If
e|X ~ (0,D),
then D~"?e|X ~ (0,0°I,,), and so the regression model
D ?Y =D X3+ D e
has homoskedastic errors. OLS applied to the transformed data yields
(X'D'X)"Y(X'D7'Y),

the generalized/weighted least-squares estimator (GLS/WLS). That
is, we use G = D7!X. The variance of the GLS estimator is
(X'D1Xx)~1.
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Sampling properties (H5.5-H5.12)

When
e|X ~ N(0,0°I,,),

we have that .
BIX ~ N(B,0* (X' X)),

for finite n.

Follows from B being linear in e and the normal distribution being a
local-scale family.

In this case,

we can construct hypothesis tests on linear contrasts of 5 whose size
can be controlled exactly.

This does not extend beyond the normal model.

To get general results we will work under asymptotic approximations.
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