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Overview

This deck of slides set up the linear regression model and goes through
a selection of elementary results that are considered prerequisites for
this course.

The corresponding chapters in Hansen are 2 to 5.
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(Linear) conditional-expectation function (H2.14-H2.15)

Dependent variable Y ∈ R and (column) vector of regressors X ∈ Rk

The conditional-expectation function (CEF) is

m(x) = E(Y |X = x).

The regression error is
e = Y − m(X).

Then
Y = m(X) + e, E(e|X = x) = 0.

The CEF is interesting from a prediction perspective as it is optimal
under expected squared loss, i.e.,

E[(Y − m(X))2] ≤ E[(Y − m̃(X))2]

for any function m̃.
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The linear CEF model restricts the conditional mean function to be

E(Y |X = x) = x1β1 + x2β2 + · · · + xkβk = x′β.

This is linear in the coefficient vector β.

Nonlinearities in the regressors can be accommodated.

Alternatively (and equivalently),

Y = X ′β + e, E(e|X = x) = 0. (1)

Observe that, by the law of iterated expectations, E(e|X = x) = 0
implies (among other things) that

E(Xe) = 0

and also that E(e) = 0.
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We only restrict the conditional mean, not the conditional variance. So

E(e2|X = x)

may be a function of x.

One sometimes assumes that

E(e2|X = x) = σ2,

which does not change with x.

This is an assumption of homoskedasticity.

5/ 19



Best linear approximation (H2.18 and H2.25)

When the CEF m is nonlinear we can still look for the best linear
approximation x′β to it.

Using expected squared loss, this mean solving

min
β

E[(m(X) − X ′β)2].

The first-order condition for this problem is

E(XX ′)β = E(Xm(X)),

and is linear in β.

If rankE(XX ′) = k we find the unique solution

β = E(XX ′)−1 E(Xm(X)) = E(XX ′)−1 E(XY )

where we used E(XY ) = E[E(XY |X)] = E[XE(Y |X)] = E(Xm(X))
in the last step.
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With this definition of β we can define the projection error

e = Y − X ′β

and observe that

E(Xe) = E(XY )−E(XX ′)β = E(XY )−E(XX ′)E(XX ′)−1 E(XY ) = 0

so that we can always write

Y = X ′β + e, E(Xe) = 0. (2)

If a constant term is included this further implies that E(e) = 0.

Equations (1) and (2) only concern the same parameter vector β and
error e when the CEF is linear. In the nonlinear CEF case, (1) is
meaningless, but (2) is not.

7/ 19



Random (i.i.d.) sampling (H4.2)

(Y1, X1), . . . , (Yn, Xn) is a random sample (of size n) on (Y, X) if and
only if the (Yi, Xi) are

independent across i and,

identically distributed according to the distribution of (Y, X).

Both parts can be relaxed considerably, but the random-sampling
framework suffices for our purposes.
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Matrix notation

We have Yi = X ′
iβ + ei for all i = 1, . . . , n.

Can vertically stack these n equations to arrive at

Y = Xβ + e.

Here, X is an n × k matrix while Y and e are each n × 1 vectors.

Now wish to construct an estimator β̂ of β.

An estimator is just a function of the sample; many such functions can
be taken.

Here, focus on ordinary least squares (OLS) estimator.
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Ordinary least-squares estimator (H3.4 and H3.10)

Derivation 1: As the minimizer of the sum of squared residuals (SSR)
or sum of squared errors (SSE),

SSE(b) =
n∑

i=1
(Yi − X ′

ib)2 = (Y − Xb)′(Y − Xb).

The first-order condition for a minimum is
n∑

i=1
Xi(Yi − X ′

ib) = X ′(Y − Xb) = 0,

this is a linear system of k equations in k unknowns.

A unique solution exists if rank X ′X = k; it equals

β̂ =
(

1/n

n∑
i=1

XiX
′
i

)−1(
1/n

n∑
i=1

XiYi

)
= (X ′X)−1(X ′Y ).
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The motivation for this approach to deriving OLS comes from the fact
that we can characterize β to be the solution to the corresponding
population problem

E[(Y − X ′
ib)2].

Let ei(b) = Yi − X ′
ib. Then

min
b

SSE(b) = min
b

n∑
i=1

e2
i (b),

and so we are minimizing the variance (if a constant term is included)
of the squared errors.
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The least-squares residuals are

êi = Yi − X ′
iβ̂ = ei(β̂).

Collecting these in the n×1 vector ê = Y −Xβ̂ we easily observe that
n∑

i=1
Xiêi = X ′ê = X ′Y − X ′Xβ̂ = X ′Y − X ′X(X ′X)−1(X ′Y ) = 0.

This motivates Derivation 2: As the estimator that yields residuals that
are orthogonal (in sample) to the regressors,

argsolveb

n∑
i=1

Xiei(b) = 0.

In matrix notation this is equal to solving the OLS estimating equations

X ′(Y − Xb) = 0

and this yields β̂. This problem is a sample version of (2).
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Derivation 3: Finally, given that we know that

β = E(XX ′)−1E(XY ),

a ratio of expectations, we may consider a direct sample counterpart
to this.

A sample counterpart of E(XY ) is 1/n
∑n

i=1 XiYi = X ′Y /n.

A sample counterpart of E(XX ′) is 1/n
∑n

i=1 XiX
′
i = X ′X/n.

This again yields
β̂ = (X ′X)−1(X ′Y ).
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Collinearity

The estimating equations

X ′(Y − Xb) = 0

have a unique solution when the k ×k design matrix X ′X is invertible.

As, for any k × 1 vector a,

a′X ′Xa = ∥Xa∥2

the design matrix is invertible if and only if the columns of X are
linearly independent.

This is a no-multicollinearity condition.

In absence of this there are many solutions to the least-squares problem.
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Projection matrices (H3.11-H3.16)

The matrix
P = X(X ′X)−1X ′

projects on the space spanned by the columns of X.

The matrix
M = In − P = In − X(X ′X)−1X ′

projects on the orthogonal complement.

Observe that

P Y = Xβ̂, MY = Y − Xβ̂ = ê

and that Y = P Y + MY , decomposing Y into two orthogonal parts.
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Gauss-Markov and Generalized least squares (H4.4-H4.9)

We derived an expression for β from (2). It is valid under both (1) and
(2).

Under (1) we have E(e|X = x) = 0 and so also

E[g(X) e] = E[g(X)(Y − X ′β)] = 0

by the law of iterated expectations.

Hence, for any function g such that E[g(X)X ′] is an invertible matrix,

β = E[g(X)X ′]−1E[g(X)Y ]

is equally true.

Leads to many possible linear estimators of β.

Not true under (2) alone!
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Let G be n × k matrix collecting all g(Xi). Then the corresponding
estimator is

β̃ = (G′X)−1(G′Y ).

Immediately clear that

E(β̃ − β|X) = 0

and that
var(β̃|X) = (G′X)−1(G′D G)(X ′G)−1,

where the n × n diagonal matrix

D = E(ee′|X) = diag(σ2
1 , . . . , σ2

n)

is the conditional variance matrix of the error vector.

For OLS, G = X. Under homoskedasticity, D = σ2In and so the
variance of the OLS estimator becomes

var(β̂|X) = σ2 (X ′X)−1.
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Under (1) and homoskedastic errors, OLS is the best linear unbiased
estimator (BLUE) of β. That is, we use G = X.

No other linear estimator that is unbiased can achieve a variance that
is smaller than β̂.

No longer true under heteroskedasticity. If

e|X ∼ (0, D),

then D−1/2e|X ∼ (0, σ2In), and so the regression model

D−1/2Y = D−1/2Xβ + D−1/2e

has homoskedastic errors. OLS applied to the transformed data yields

(X ′D−1X)−1(X ′D−1Y ),

the generalized/weighted least-squares estimator (GLS/WLS). That
is, we use G = D−1X. The variance of the GLS estimator is
(X ′D−1X)−1.

18/ 19



Sampling properties (H5.5-H5.12)

When
e|X ∼ N(0, σ2 In),

we have that
β̂|X ∼ N(β, σ2 (X ′X)−1),

for finite n.

Follows from β̂ being linear in e and the normal distribution being a
local-scale family.

In this case,

we can construct hypothesis tests on linear contrasts of β whose size
can be controlled exactly.

This does not extend beyond the normal model.

To get general results we will work under asymptotic approximations.
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